cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376574 G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)/(1 - x^3)).

Original entry on oeis.org

1, 1, 2, 5, 15, 46, 147, 486, 1646, 5684, 19940, 70864, 254592, 923153, 3374046, 12417246, 45975677, 171141378, 640105278, 2404375805, 9066188052, 34305301482, 130219435385, 495735347502, 1892254721982, 7240580768021, 27768359445128, 106718055778871
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2024

Keywords

Crossrefs

Programs

  • Maple
    A376574 := proc(n)
        add(A000108(n-3*k)*binomial(n-2*k-1,k),k=0..floor(n/3)) ;
    end proc:
    seq(A376574(n),n=0..80) ;
    # R. J. Mathar, Oct 24 2024
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(2*(n-3*k), n-3*k)/(n-3*k+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x/(1-x^3))))

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,k) * Catalan(n-3*k).
G.f.: 2/(1 + sqrt(1 - 4*x/(1 - x^3))).
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +(-2*n+7)*a(n-3) +4*(n-5)*a(n-4) +(n-8)*a(n-6)=0. - R. J. Mathar, Oct 24 2024