A376620 Number of equational laws for magmas involving n operations, up to relabeling and symmetry.
2, 5, 41, 364, 4294, 57882, 888440, 15120105, 281942218, 5698630860, 123850400282, 2875187314622, 70909556575040, 1849319825544900, 50801676938400207, 1464954360561398340, 44213852151914127210, 1392971702129279452950, 45705100441643456206404, 1558551328538087579977710
Offset: 0
Keywords
Examples
For n=0 the distinct laws are x=x and x=y. For n=1 the distinct laws are x=x*x, x=x*y, x=y*x, x=y*y, and x=y*z. (x*y=z, for instance, is a relabeling of x=y*z after applying symmetry.)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..444
- Equational Theories project, Basic theory of magmas.
- Equational Theories project, Generating a list of equations on magmas, Python script.
- Terence Tao, A pilot project in universal algebra to explore new ways to collaborate and use machine assistance?, 25 Sep 2024.
Programs
-
PARI
\\ All functions that are needed a110(n) = sum(k=0, n, stirling(n,k,2)); \\ Bell a108(n) = binomial(2*n,n)/(n+1); \\ Catalan a289679(n) = a108(n-1)*a110(n); Ach(n,k)= my(s=n<2 && n>=0 && n==k); if(n<=1, s, k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2) + s); a103293(n) = if(n<3, 1, sum(k=0, n-1, stirling(n-1,k,2) + Ach(n-1,k))/2); a376620(n) = if(n%2==0,(a289679(n+2) + a108(n/2) * (2*a103293(n+3) - a110(n+2)))/2, a289679(n+2)/2); \\ Hugo Pfoertner, Sep 30 2024
-
Python
from functools import lru_cache from sympy.functions.combinatorial.numbers import stirling, bell, catalan def A376620(n): if n&1: return catalan(n+1)*bell(n+2)>>1 else: @lru_cache(maxsize=None) def ach(n,k): return (n==k) if n<2 else k*ach(n-2,k)+ach(n-2,k-1)+ach(n-2,k-2) return catalan(n+1)*bell(n+2)+catalan(n>>1)*((sum(stirling(n+2,k,kind=2)+ach(n+2,k)>>1 for k in range(n+3))<<1)-bell(n+2))>>1 # Chai Wah Wu, Oct 15 2024
Formula
Extensions
a(7) and beyond from Michael S. Branicky, Sep 30 2024 using formulas
Comments