A376637 The word 1 belongs to the sequence, and whenever a word w belongs to the sequence, then the words consisting of 1's and 2's whose run lengths transform equals w also belong to the sequence.
1, 2, 11, 12, 21, 22, 112, 122, 211, 221, 1121, 1122, 1211, 2122, 2211, 2212, 11221, 12112, 12211, 12212, 21121, 21122, 21221, 22112, 112212, 121122, 212211, 221121, 1121122, 1121221, 1122122, 1211221, 1221121, 1221211, 2112122, 2112212, 2122112, 2211211
Offset: 1
Examples
The first terms, alongside their run lengths transform, are: n a(n) RL(a(n)) -- ---- -------- 1 1 1 2 2 1 3 11 2 4 12 11 5 21 11 6 22 2 7 112 21 8 122 12 9 211 12 10 221 21 11 1121 211 12 1122 22 13 1211 112 14 2122 112 15 2211 22 16 2212 211
Links
- Geneviève Paquin, Srĕcko Brlek, Damien Jamet, Extremal generalized smooth words
- Rémy Sigrist, Table of n, a(n) for n = 1..10048
- Rémy Sigrist, Illustration of the first terms (arrows denotes run lengths transforms)
- Rémy Sigrist, PARI program
- Index entries for sequences related to Kolakoski sequence
Programs
-
PARI
\\ See Links section.
Comments