A376657 Number of integer factorizations of n into nonsquarefree factors > 1.
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 16, 64, 72, 144, 192, 256, 288: (16) (64) (72) (144) (192) (256) (288) (4*4) (8*8) (8*9) (4*36) (4*48) (4*64) (4*72) (4*16) (4*18) (8*18) (8*24) (8*32) (8*36) (4*4*4) (9*16) (12*16) (16*16) (9*32) (12*12) (4*4*12) (4*8*8) (12*24) (4*4*9) (4*4*16) (16*18) (4*4*4*4) (4*8*9) (4*4*18)
Crossrefs
For prime-powers we have A000688.
For nonprime numbers we have A050370.
The version for partitions is A114374.
For perfect-powers we have A294068.
For non-perfect-powers we have A303707.
For non-prime-powers we have A322452.
The strict case is A376679.
Nonsquarefree numbers:
- A078147 (first differences)
- A376593 (second differences)
- A376594 (inflections and undulations)
- A376595 (nonzero curvature)
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],NoneTrue[SquareFreeQ]]],{n,100}]