A376675 a(n) is the least prime p such that p + 7*k*(k+1) is prime for 0 <= k <= n-1 but not for k=n.
2, 3, 59, 5, 89, 599, 3329, 617, 269, 21107, 9833477, 19497833669, 215830859597, 111338387, 251704297005767, 17
Offset: 1
Programs
-
Maple
f:= proc(p) local k; for k from 1 while isprime(p+k*(k+1)*7) do od: k end proc: A:= Vector(12): count:= 0: for i from 1 while count < 12 do v:= f(ithprime(i)); if A[v] = 0 then count:= count+1; A[v]:= ithprime(i) fi od: convert(A,list);
-
Mathematica
Table[p=1;m=7;Monitor[Parallelize[While[True,If[And[MemberQ[PrimeQ[Table[p+m*k*(k+1),{k,0,n-1}]],False]==False,PrimeQ[p+m*n*(n+1)]==False],Break[]];p++];p],p],{n,1,10}]
-
PARI
isok(p, n) = for (k=0, n-1, if (! isprime(p + 7*k*(k+1)), return(0))); return (!isprime(p + 7*n*(n+1))); a(n) = my(p=2); while (!isok(p, n), p=nextprime(p+1)); p;
-
Perl
use ntheory qw(:all); sub a { my $n = $[0]; my $lo = 2; my $hi = 2*$lo; while (1) { my @terms = grep { !is_prime($ + 7*$n*($n+1)) } sieve_prime_cluster($lo, $hi, map { 7*$*($+1) } 1 .. $n-1); return $terms[0] if @terms; $lo = $hi+1; $hi = 2*$lo; } }; $| = 1; for my $n (1..100) { print a($n), ", " }; # Daniel Suteu, Oct 04 2024
Extensions
a(11)-a(12) from Hugo Pfoertner, Oct 01 2024
a(13)-a(14) from Hugo Pfoertner, Oct 03 2024
a(15)-a(16) from Daniel Suteu, Oct 04 2024