A376699 Positions of primes in the sequence of numbers of the form 2^i * 3^j - 1 (A069353).
3, 4, 5, 6, 8, 10, 11, 13, 15, 16, 18, 21, 22, 25, 31, 32, 36, 39, 40, 42, 51, 57, 61, 63, 65, 66, 71, 73, 79, 82, 94, 97, 106, 107, 110, 120, 121, 127, 128, 129, 130, 138, 142, 144, 161, 192, 204, 205, 212, 216, 232, 234, 244, 259, 264, 265, 308, 329, 346, 348
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{lim = 10^10}, Position[Sort@ Flatten@ Table[2^i*3^j - 1, {i, 0, Log2[lim]}, {j, 0, Log[3, lim/2^i]}], _?PrimeQ] // Flatten]
-
PARI
lista(lim) = {my(s = List()); for(i = 0, logint(lim, 2), for(j = 0, logint(lim >> i, 3), listput(s, 2^i * 3^j - 1))); s = Set(s); for(i = 1, #s, if(isprime(s[i]), print1(i, ", ")));}
-
Python
from itertools import count, islice from sympy import isprime, integer_log def A069353(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(((x+1)//3**i).bit_length() for i in range(integer_log(x+1,3)[0]+1)) return bisection(f,n-1,n-1) def A376699_gen(): # generator of terms return filter(lambda n:isprime(A069353(n)), count(1)) A376699_list = list(islice(A376699_gen(),30)) # Chai Wah Wu, Mar 31 2025