cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376716 Expansion of (1 - x + x^2)/((1 - x + x^2)^2 - 4*x^2).

Original entry on oeis.org

1, 1, 4, 11, 27, 72, 189, 493, 1292, 3383, 8855, 23184, 60697, 158905, 416020, 1089155, 2851443, 7465176, 19544085, 51167077, 133957148, 350704367, 918155951, 2403763488, 6293134513, 16475640049, 43133785636, 112925716859, 295643364939, 774004377960
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((1-x+x^2)/((1-x+x^2)^2-4*x^2))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n-2*k+1, 2*k));

Formula

a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-2*k+1,2*k).

A376717 Expansion of (1 - x + x^3)/((1 - x + x^3)^2 - 4*x^3).

Original entry on oeis.org

1, 1, 1, 4, 11, 22, 42, 91, 205, 443, 936, 1999, 4316, 9300, 19949, 42785, 91917, 197548, 424331, 911218, 1957086, 4203927, 9029949, 19395031, 41657808, 89477119, 192189304, 412803240, 886657081, 1904448737, 4090567673, 8786130132, 18871714923, 40534529294
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec((1-x+x^3)/((1-x+x^3)^2-4*x^3))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-4*k+1, 2*k));

Formula

a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) + 2*a(n-4) - a(n-6).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-4*k+1,2*k).

A376786 Expansion of (1 + x - x^4)/((1 + x - x^4)^2 - 4*x).

Original entry on oeis.org

1, 3, 5, 7, 10, 21, 48, 99, 183, 326, 602, 1165, 2282, 4396, 8318, 15675, 29743, 56841, 108765, 207510, 394809, 750880, 1429845, 2725685, 5196420, 9901692, 18859649, 35921156, 68432064, 130388316, 248437405, 473322419, 901717453, 1717851555, 3272777450
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec((1+x-x^4)/((1+x-x^4)^2-4*x))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(2*n-6*k+1, 2*k+1));

Formula

a(n) = 2*a(n-1) - a(n-2) + 2*a(n-4) + 2*a(n-5) - a(n-8).
a(n) = Sum_{k=0..floor(n/4)} binomial(2*n-6*k+1,2*k+1).
Showing 1-3 of 3 results.