cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376720 Product of numbers m that are neither squarefree nor prime powers and rad(m), where rad = A007947.

Original entry on oeis.org

72, 108, 200, 144, 392, 216, 400, 968, 675, 288, 500, 1352, 324, 784, 1800, 1323, 2312, 432, 1125, 2888, 800, 3528, 1936, 2700, 4232, 576, 1372, 3267, 1000, 2704, 648, 1568, 6728, 4563, 3600, 7688, 5292, 8712, 2025, 4624, 9800, 864, 3087, 10952, 4500, 5776, 7803
Offset: 1

Views

Author

Michael De Vlieger, Oct 05 2024

Keywords

Comments

Term a(n) = k is powerful but not a prime power (i.e., in A286708) such that k/rad(k) is not squarefree, where rad = A007947 and k/rad(k) = A003557(k).
Permutation of A372404.

Examples

			Let b(n) = A126706(n).
Table of b(n) and a(n) for n <= 12:
   n   b(n)                a(n)
  -----------------------------------------
   1    12 = 2^2 * 3        72 = 2^3 * 3^2
   2    18 = 2 * 3^2       108 = 2^2 * 3^3
   3    20 = 2^2 * 5       200 = 2^3 * 5^2
   4    24 = 2^3 * 3       144 = 2^4 * 3^2
   5    28 = 2^2 * 7       392 = 2^3 * 7^2
   6    36 = 2^2 * 3^2     216 = 2^3 * 3^3
   7    40 = 2^3 * 5       400 = 2^4 * 5^2
   8    44 = 2^2 * 11      968 = 2^3 * 11^2
   9    45 = 3^2 * 5       675 = 3^3 * 5^2
  10    48 = 2^4 * 3       288 = 2^5 * 3^2
  11    50 = 2 * 5^2       500 = 2^2 * 5^3
  12    52 = 2^2 * 13     1352 = 2^3 * 13^2
		

Crossrefs

Programs

  • Mathematica
    Map[#*Times @@ FactorInteger[#][[All, 1]] &, Select[Range[12, 160], Nor[PrimePowerQ[#], SquareFreeQ[#]] &] ]
  • Python
    from math import prod, isqrt
    from sympy import primepi, integer_nthroot, mobius, primefactors
    def A376720(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        return (m:=bisection(f,n,n))*prod(primefactors(m)) # Chai Wah Wu, Oct 05 2024

Formula

a(n) = m * rad(m) for m in A126706.