A376736 a(n) is the numerator of the expected number of random moves of a chess knight to reach a position outside an nXn chessboard, starting in one of the corners.
1, 1, 4, 62, 269, 1766, 395497, 101338, 44125237, 227721959, 3361699348115, 483866477194862, 277887411827604127, 790848403160840410, 2785714552717079970073201, 89715505143567836216964174, 2034961072108249587083318018747, 457177774768288408431166142758841, 1085703228381446052419019696184520372520
Offset: 1
Examples
1, 1, 4/3, 62/43, 269/167, 1766/1017, 395497/213488, 101338/51901, 44125237/21578387, 227721959/106983448, ... Approximately 1, 1, 1.333, 1.442, 1.611, 1.736, 1.853, 1.953, 2.045, 2.129, 2.206, ...
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..45
- Hugo Pfoertner, Plot of A376736(n)/A376737(n) vs n, using Plot 2.
- Hugo Pfoertner, Results of a simulation of 10^9 walks on the 8X8 board.
Crossrefs
Programs
-
PARI
\\ Uses function droprob from A376606 knightmoves = [[2, 1], [1, 2], [-1, 2], [-2, 1], [-2, -1], [-1, -2], [1, -2], [2, -1]]; a376736(n) = numerator(droprob(n, knightmoves, 8))
Comments