A376777 a(n) = Sum_{k=0..n} tan(k*Pi/(1+2*n))^(2*n).
1, 3, 90, 7077, 1070244, 264893255, 97371674686, 49810055605065, 33841518448166024, 29482777900878972939, 32045566134755984390370, 42511262856482596083333613, 67601184141908795841006166700, 126937986415384594402633688922447, 277898987279628989741077214849901894
Offset: 0
Keywords
References
- Bill Gosper, Email to N. J. A. Sloane, Nov 02 2024.
- Shigeichi Moriguchi, Kanehisa Udagawa, Shin Hitotsumatsu, "Mathematics Formulas II", Iwanami Shoten, Publishers (1957), p. 14.
Links
- Peter Luschny, Table of n, a(n) for n = 0..100
- Bill Gosper, Extract from email message of Nov 02 2024.
Programs
-
Julia
using Nemo RR = ArbField(1000) function F(n) sum(RR(tanpi(QQBar(k) / (1 + 2 * n))^(2 * n)) for k in 0:n) end a(n) = unique_integer(F(n))[2] println([a(n) for n in 0:14]) # Peter Luschny, Nov 10 2024
-
Mathematica
(* See Gosper link for his original Mathematica code. *) a[0] = 1; a[n_] := ToNumberField@ Sum[Tan[k*Pi/(2*n + 1)]^(2*n), {k, 0, n}]; Array[a, 15, 0] (* Amiram Eldar, Nov 10 2024 *)
-
PARI
a(n) = { polsym(sum(m=0, n, x^m*binomial(2*n+1, 2*(n-m))*(-1)^(m+1)), n)[n+1]+(n==0) } \\ Thomas Scheuerle, Nov 11 2024
Formula
a(n) ~ exp(1) * 2^(4*n) * n^(2*n) / Pi^(2*n). - Vaclav Kotesovec, Nov 10 2024
Extensions
More terms from Amiram Eldar, Nov 10 2024
a(0) = 1 prepended by Peter Luschny, Nov 10 2024
Comments