cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376800 3-brilliant numbers with distinct prime factors.

Original entry on oeis.org

30, 42, 70, 105, 2431, 2717, 3289, 3553, 4147, 4199, 4301, 4433, 4807, 5083, 5291, 5423, 5681, 5797, 5863, 6061, 6149, 6409, 6479, 6721, 6851, 6919, 7163, 7337, 7429, 7579, 7657, 7667, 7733, 7843, 8041, 8177, 8437, 8569, 8671, 8723, 8789, 8987, 9061, 9139, 9269
Offset: 1

Views

Author

Paul Duckett, Oct 04 2024

Keywords

Examples

			30 = 2*3*5 is a term.
2431 = 11*13*17 is a term.
		

Crossrefs

Intersection of A376703 and A007304.

Programs

  • Python
    from sympy import factorint
    def ok(n):
        f = factorint(n)
        return len(f) == sum(f.values()) == 3 and len(set([len(str(p)) for p in f])) == 1
    print([k for k in range(9300) if ok(k)]) # Michael S. Branicky, Oct 05 2024
    
  • Python
    from math import prod
    from sympy import primerange
    from itertools import count, combinations, islice
    def bgen(d): # generator of terms that are products of d-digit primes
        primes, out = list(primerange(10**(d-1), 10**d)), set()
        for t in combinations(primes, 3): out.add(prod(t))
        yield from sorted(out)
    def agen(): # generator of terms
        for d in count(1): yield from bgen(d)
    print(list(islice(agen(), 45))) # Michael S. Branicky, Oct 05 2024

Extensions

a(6) and beyond from Michael S. Branicky, Oct 05 2024