A376815 Decimal expansion of a constant related to the asymptotics of A376812.
4, 1, 8, 3, 6, 2, 3, 0, 8, 2, 3, 1, 5, 0, 1, 0, 3, 7, 5, 9, 2, 4, 3, 4, 2, 0, 7, 4, 7, 1, 4, 3, 6, 2, 8, 9, 8, 9, 5, 6, 3, 8, 6, 9, 7, 7, 0, 7, 0, 3, 5, 8, 8, 7, 8, 5, 7, 8, 3, 2, 7, 1, 0, 0, 2, 0, 9, 8, 1, 9, 5, 1, 5, 7, 2, 6, 9, 5, 0, 8, 1, 6, 9, 4, 1, 1, 4, 8, 1, 0, 4, 6, 8, 4, 1, 7, 7, 0, 4, 5, 4, 9, 5, 3, 2
Offset: 1
Examples
4.18362308231501037592434207471436289895638697707035887857832710...
Programs
-
Mathematica
RealDigits[E^Sqrt[3*Log[r]^2 + 8*PolyLog[2, r^(1/2)] - 2*Pi^2/3] /. r -> (-2 + ((29 - 3*Sqrt[93])/2)^(1/3) + ((29 + 3*Sqrt[93])/2)^(1/3))/3, 10, 120][[1]] (* Vaclav Kotesovec, Oct 07 2024 *)
Formula
Equals limit_{n->infinity} A376812(n)^(1/sqrt(n)).
Equals A376660^2. - Vaclav Kotesovec, Oct 06 2024
Equals exp(sqrt(3*log(r)^2 + 8*polylog(2, r^(1/2)) - 2*Pi^2/3)), where r = A088559 = 0.4655712318767680266567312252199... is the real root of the equation r*(1+r)^2 = 1. - Vaclav Kotesovec, Oct 07 2024