A376833 Second smallest prime factor of numbers m that are both squarefree and composite.
3, 5, 7, 5, 7, 11, 13, 3, 11, 17, 7, 19, 13, 3, 23, 17, 11, 19, 29, 31, 13, 3, 23, 5, 37, 11, 3, 41, 17, 43, 29, 13, 31, 47, 19, 3, 5, 53, 5, 37, 3, 23, 59, 17, 61, 41, 43, 5, 19, 67, 3, 47, 71, 13, 29, 73, 7, 31, 79, 53, 23, 5, 83, 5, 3, 59, 89, 7, 61, 37, 3
Offset: 1
Examples
Let b(n) = A120944(n). a(1) = 3 since b(1) = 6, and 3 is the second smallest prime factor. a(2) = 5 since b(2) = 10, and 5 is the second smallest prime factor. Table showing select values of a(n): n b(n) a(n) ----------------------- 1 6 = 2*3 3 2 10 = 2*5 5 3 14 = 2*7 7 4 15 = 3*5 5 5 21 = 3*7 7 6 22 = 2*11 11 7 26 = 2*13 13 8 30 = 2*3*5 3 14 42 = 2*3*7 3 22 66 = 2*3*11 3 24 70 = 2*5*7 5 82 210 = 2*3*5*7 3
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^20.
Programs
-
Mathematica
Map[FactorInteger[#][[2, 1]] &, Select[Range[250], And[SquareFreeQ[#], CompositeQ[#]] &]]
-
Python
from math import isqrt from sympy import primepi, mobius, primefactors def A376833(n): def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n+1, f(n+1) while m != k: m, k = k, f(k) return primefactors(m)[1] # Chai Wah Wu, Oct 06 2024