A376846 Number of m <= n such that rad(m) | n and Omega(m) > Omega(n), where rad = A007947 and Omega = A001222.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 1, 3, 0, 1, 0, 3, 1, 1, 0, 4, 0, 2, 0, 3, 0, 0, 0, 3, 1, 2, 0, 2, 0, 1, 1, 3, 0, 2, 0, 3, 0, 0, 0, 7, 0, 3, 1, 5, 0, 1, 0, 4, 0, 3, 0, 8, 0, 1, 0, 4, 0, 4, 0, 4, 2
Offset: 1
Keywords
Examples
Table of select n such that a(n) > 0: n a(n) List of m such that Omega(m) > Omega(n). ------------------------------------------------- 10 1 {8} 14 1 {8} 18 1 {16} 20 1 {16} 22 2 {8, 16} 26 2 {8, 16} 28 1 {16} 30 2 {16, 24} 33 1 {27} 34 3 {8, 16, 32} 36 1 {32} 38 3 {8, 16, 32} 39 1 {27} 40 1 {32} 42 4 {16, 24, 32, 36}
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Hasse diagrams of m in select rows n of A162306 indicating in red those m such that Omega(m) > Omega(n).
- Michael De Vlieger, Numbers k for which floor(log k / log lpf(k)) <= bigomega(k), 2024, about zeros in this sequence.
Programs
-
Mathematica
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; {0}~Join~Table[With[{k = PrimeOmega[n]}, Count[Range[n], _?(And[Divisible[n, rad[#]], PrimeOmega[#] > k] &)]], {n, 2, 120}]
Comments