cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376847 Number of m > n such that rad(m) | n and Omega(m) <= Omega(n), where rad = A007947 and Omega = A001222.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 1, 0, 3, 1, 1, 0, 4, 0, 1, 0, 3, 0, 4, 0, 0, 1, 1, 1, 2, 0, 1, 1, 5, 0, 5, 0, 3, 2, 1, 0, 6, 0, 1, 1, 3, 0, 1, 1, 5, 1, 1, 0, 11, 0, 1, 2, 0, 1, 5, 0, 3, 1, 5, 0, 4, 0, 1, 1, 3, 1, 5, 0, 8, 0, 1, 0, 11, 1, 1, 1
Offset: 1

Views

Author

Michael De Vlieger, Oct 13 2024

Keywords

Examples

			Table of select n such that a(n) > 0:
   n  a(n)  List of m in A376248 such that Omega(m) <= Omega(n)
  -------------------------------------------------------------
   6    1   {9}
  10    1   {25}
  12    2   {18, 27}
  14    1   {49}
  15    1   {25}
  18    1   {27}
  20    3   {25, 50, 125}
  24    4   {27, 36, 54, 81}
  28    3   {49, 98, 343}
  30    4   {45, 50, 75, 125}
  40    5   {50, 100, 125, 250, 625}
  48    6   {54, 72, 81, 108, 162, 243}
  60   11   {75, 81, 90, 100, 125, 135, 150, 225, 250, 375, 625}
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    cond := (m, n) -> irem(n, Radical(m)) = 0 and Omega(m) <= Omega(n):
    a := n -> nops(select(m -> cond(m, n), [seq(n+1..A068795(n))])):
    seq(a(n), n = 1..87);  # Peter Luschny, Oct 25 2024
  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    Table[k = PrimeOmega[n]; w = PrimeNu[n]; Binomial[k + w, w] - Count[Range[n], _?(And[Divisible[n, rad[#]], PrimeOmega[#] > k] &)], {n, 120}]

Formula

a(n) = card({m > n : rad(m) | n, Omega(m) <= Omega(n) }).
a(n) = 0 for prime power n (in A000961).
a(n) = card(A376248 \ A162306).
a(n) = A376567(n) - A010846(n) + A376546(n) = binomial(A001222(n) + A001221(n), A001221(n)) - A010846(n) + A376546(n).