A376862 Unitary Zumkeller numbers whose divisors can be partitioned into two disjoint subsets with equal sums and cardinalities.
30, 42, 60, 66, 78, 90, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690
Offset: 1
Examples
The set of divisors of 90 is {1,2,3,5,6,9,10,15,18,30,45,90}, which is a union of the sets {1,2,3,6,15,90} and {5,9,10,18,30,45}, which have equal sums (117) and cardinalities (6). So, 90 is a term.
Links
- Eric Weisstein's World of Mathematics, Unitary Divisor Function
- Wikipedia, Unitary divisor
Programs
-
Mathematica
uzn=Cases[Import["https://oeis.org/A290466/b290466.txt","Table"],{,}][[All,2]]; dzn=Select[Range@700,!IntegerQ@Sqrt@#&&(d=Divisors@#; MemberQ[Total/@Subsets[d,{Length@d/2}],Total@d/2])&]; Intersection[uzn,dzn] (* Thanks to Giorgos Kalogeropoulos at A347063 *)
Comments