cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376862 Unitary Zumkeller numbers whose divisors can be partitioned into two disjoint subsets with equal sums and cardinalities.

Original entry on oeis.org

30, 42, 60, 66, 78, 90, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690
Offset: 1

Views

Author

Ivan N. Ianakiev, Oct 07 2024

Keywords

Comments

A unitary divisor of n is a divisor d such that gcd(d,n/d)=1.
This sequence is an intersection of A290466 and A347063 and seemingly a subsequence of A293188.
From the facts: a) for n>2 every primorial(n), i.e. A002110(n), is a Zumkeller number, b) a(1) = 30 = 2*3*5 is primorial(3), c) if n is squarefree, than sigma(n) = usigma(n), d) the number of unitary divisors of n is 2^k, where k is the number of distinct prime factors of n, and e) p*y belongs to A347063, where p is a prime coprime to y and y belongs to A347063, it follows that the present sequence is infinite, since for m >= 3 primorial(m) is a term.
It seems that for k >= 0 all numbers of the form 30 + 36k are terms.

Examples

			The set of divisors of 90 is {1,2,3,5,6,9,10,15,18,30,45,90}, which is a union of the sets {1,2,3,6,15,90} and {5,9,10,18,30,45}, which have equal sums (117) and cardinalities (6). So, 90 is a term.
		

Crossrefs

Programs

  • Mathematica
    uzn=Cases[Import["https://oeis.org/A290466/b290466.txt","Table"],{,}][[All,2]];
    dzn=Select[Range@700,!IntegerQ@Sqrt@#&&(d=Divisors@#; MemberQ[Total/@Subsets[d,{Length@d/2}],Total@d/2])&]; Intersection[uzn,dzn] (* Thanks to Giorgos Kalogeropoulos at A347063 *)