cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A377058 Triangle of generalized Stirling numbers of the lower level of the hierarchy (case m=2).

Original entry on oeis.org

1, 5, 1, 32, 11, 1, 248, 113, 18, 1, 2248, 1230, 263, 26, 1, 23272, 14534, 3765, 505, 35, 1, 270400, 186992, 55654, 9115, 865, 45, 1, 3479744, 2612000, 865186, 163779, 19110, 1372, 56, 1, 49079936, 39434448, 14235388, 3013164, 408569, 36288, 2058, 68, 1
Offset: 0

Views

Author

Keywords

Comments

These numbers are a subset of the generalized Stirling numbers introduced in A370518. Therefore, we assume them to be numbers of the lower level of hierarchy with respect to A370518.

Examples

			[0]           1;
[1]           5,          1;
[2]          32,         11,         1;
[3]         248,        113,        18,        1;
[4]        2248,       1230,       263,       26,       1;
[5]       23272,      14534,      3765,      505,      35,      1;
[6]      270400,     186992,     55654,     9115,     865,     45,     1;
[7]     3479744,    2612000,    865186,   163779,   19110,   1372,    56,    1;
[8]    49079936,   39434448,  14235388,  3013164,  408569,  36288,  2058,   68,    1;
		

Crossrefs

A361649 (row sums).
Triangle for m=0: A130534.
Triangle for m=1: A376863.

Programs

  • Maple
    T := (m,n,k) -> add(add(Stirling1(n-j,k)*binomial(n+m,i)*binomial(n,j)*binomial(j,i)*i!*m^(j-i), j=i..n), i=0..n): m:=2: seq(seq(T(m,n,k), k=0..n), n=0..10);

Formula

T(m, n, k) = Sum_{i=0..n} Sum_{j=i..n} Stirling1(n-j, k)*binomial(n+m, i)*binomial(n, j)* binomial(j, i)*i!*m^(j-i), for m = 2.
Showing 1-1 of 1 results.