A376864 4-brilliant numbers with distinct prime factors.
210, 46189, 55913, 62491, 70499, 75361, 78793, 81719, 84227, 89947, 95381, 96577, 99671, 100529, 101959, 103037, 104533, 110143, 111397, 114257, 116831, 121693, 121771, 124729, 127699, 128557, 128843, 130169, 131461, 133331, 134849, 139403, 141427, 143429
Offset: 1
Examples
210 = 2*3*5*7 is a term. 130169 = 13*17*19*31 is a term.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Python
from sympy import factorint def ok(n): f = factorint(n) return len(f) == sum(f.values()) == 4 and len(set([len(str(p)) for p in f])) == 1 print([k for k in range(144000) if ok(k)]) # Michael S. Branicky, Oct 08 2024
-
Python
from math import prod from sympy import primerange from itertools import count, combinations, islice def bgen(d): # generator of terms that are products of d-digit primes primes, out = list(primerange(10**(d-1), 10**d)), set() for t in combinations(primes, 4): out.add(prod(t)) yield from sorted(out) def agen(): # generator of terms for d in count(1): yield from bgen(d) print(list(islice(agen(), 34))) # Michael S. Branicky, Oct 08 2024
Extensions
Terms corrected by Michael S. Branicky, Oct 08 2024