A376877 Numbers that have exactly one Zumkeller divisor but are not Zumkeller.
18, 100, 196, 968, 1352, 4624, 5776, 6050, 8450, 8464, 13456, 15376, 43808, 53792, 59168, 70688, 89888, 111392, 119072, 256036, 287296, 322624, 341056, 399424, 440896, 506944, 602176, 652864, 678976, 732736, 760384, 817216, 1032256, 2196608, 2402432, 2473088, 2841728
Offset: 1
Keywords
Examples
70688 = 1504 * 47, 1504 is the only Zumkeller divisor of 70688, but 70688 is not Zumkeller.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..59 (all terms <= 10^7)
Programs
-
Maple
# The function 'isZumkeller' is defined in A376880. zdiv := n -> select(isZumkeller, NumberTheory:-Divisors(n)): select(n -> nops(zdiv(n)) = 1 and op(zdiv(n)) <> n, [seq(1..2000)]);
Extensions
a(20) and beyond from Michael S. Branicky, Oct 25 2024
Comments