A376883 Phase shift of the tetration base n at height n.
8, 6, 4, 5, 8, 6, 4, 2, 1, 4, 4, 6, 8, 5, 6, 4, 8, 6, 6, 6, 8, 4, 8, 5, 6, 6, 6, 6, 1, 4, 2, 2, 2, 5, 4, 2, 8, 8, 6, 4, 8, 6, 6, 5, 2, 4, 2, 6, 5, 5, 6, 8, 6, 5, 2, 2, 8, 2, 1, 4, 8, 4, 8, 5, 6, 4, 4, 4, 6, 4, 8, 4, 4, 5, 8, 8, 8, 4, 1, 6, 8, 6, 2, 5, 4, 6, 8
Offset: 2
Examples
a(11) = 4 since A376842(11) = 4 is a 1 digit number.
References
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.
Links
- Marco Ripà, The congruence speed formula, Notes on Number Theory and DiscreteMathematics, 2021, 27(4), 43-61.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441-457.
- Marco Ripà, Congruence speed of tetration bases ending with 0, arxiv (math.NT), 2024.
- Marco Ripà, Graham's number stable digits: an exact solution, arXiv:2411.00015 [math.GM], 2024.
- Marco Ripà, Twelve Python Programs to Help Readers Test Peculiar Properties of Integer Tetration, ResearchGate, 2024. See pp. 18, 27.
- Wikipedia, Tetration.
Formula
a(n) = ((n^((n - (v(n) + 2)) mod 4 + (v(n) + 2)) - n^((n - (v(n) + 2)) mod 4 + (v(n) + 2) + 1))/10^#S(n)) mod 10 if n not a multiple of 10, and a(n) = A377124(n/10) if n is a multiple of 10.
Comments