A376907 a(n) is the least n-digit cuban prime.
7, 19, 127, 1657, 10267, 102121, 1021417, 10052191, 100381321, 1000556719, 10000510297, 100025541019, 1000011191887, 10000028937841, 100000062634561, 1000001305386991, 10000001240507791, 100000021541868691, 1000000084213608427, 10000000012591553221, 100000000159478313337
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..996
Programs
-
Maple
nextcuban:= proc(n) local k,y; for k from ceil((sqrt(12*n-3)-3)/6) do y:= (k+1)^3 - k^3; if isprime(y) then return y fi od end proc: seq(nextcuban(10^i), i = 0 .. 25); # Robert Israel, Nov 08 2024
-
Mathematica
a[n_]:=Module[{k=1},While[!PrimeQ[m=3k^2+3k+1]||IntegerLength[m]
-
Python
from itertools import count from math import isqrt from sympy import isprime def A376907(n): for k in count(isqrt((((a:=10**(n-1))<<2)-1)//12)): m = 3*k*(k+1)+1 if m >= a and isprime(m): return m # Chai Wah Wu, Oct 13 2024
Formula
Conjecture: a(n+1)/a(n) ~ 10.
Comments