A376935 Array read by antidiagonals: T(n,k) is the number of 2*n X 2*k binary matrices with all row sums k and column sums n.
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 20, 90, 20, 1, 1, 70, 1860, 1860, 70, 1, 1, 252, 44730, 297200, 44730, 252, 1, 1, 924, 1172556, 60871300, 60871300, 1172556, 924, 1, 1, 3432, 32496156, 14367744720, 116963796250, 14367744720, 32496156, 3432, 1, 1, 12870, 936369720, 3718394156400, 273957842462220, 273957842462220, 3718394156400, 936369720, 12870, 1
Offset: 0
Examples
Array begins: ======================================================================== n\k | 0 1 2 3 4 5 ... ----+------------------------------------------------------------------ 0 | 1 1 1 1 1 1 ... 1 | 1 2 6 20 70 252 ... 2 | 1 6 90 1860 44730 1172556 ... 3 | 1 20 1860 297200 60871300 14367744720 ... 4 | 1 70 44730 60871300 116963796250 273957842462220 ... 5 | 1 252 1172556 14367744720 273957842462220 6736218287430460752 ... ...
Links
- Nikolai Beluhov, Powers of 2 in Balanced Grid Colourings, arXiv:2504.21451 [math.CO], 2025.
- Robert Dougherty-Bliss, Christoph Koutschan, Natalya Ter-Saakov, and Doron Zeilberger, The (Symbolic and Numeric) Computational Challenges of Counting 0-1 Balanced Matrices, arXiv:2410.07435 [math.CO], 2024.
Crossrefs
Programs
-
PARI
T(n, k)={ local(M=Map(Mat([2*k, 1]))); my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v))); my(recurse(i, p, v, e) = if(i<0, if(!e, acc(p, v)), my(t=polcoef(p,i)); for(j=0, min(t, e), self()(i-1, p+j*(x-1)*x^i, binomial(t, j)*v, e-j)))); for(r=1, 2*n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-1, src[i, 1], src[i, 2], k))); vecsum(Mat(M)[,2]); }
Formula
T(n,k) = T(k,n).
Comments