cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376943 G.f.: Sum_{k>=0} 2^k * x^(k*(k+1)) * Product_{j=1..k} (1 + x^j).

Original entry on oeis.org

1, 0, 2, 2, 0, 0, 4, 4, 4, 4, 0, 0, 8, 8, 8, 16, 8, 8, 8, 0, 16, 16, 16, 32, 32, 32, 32, 32, 16, 16, 48, 32, 32, 64, 64, 96, 96, 96, 96, 96, 96, 64, 128, 96, 96, 160, 128, 192, 256, 256, 256, 320, 320, 320, 320, 256, 384, 384, 320, 384, 384, 448, 576, 704, 640, 768, 896
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2024

Keywords

Comments

In general, if d >= 1, b > 0 and g.f. = Sum_{k>=0} d^k * x^(b*k^2 + c*k) * Product_{j=1..k} (1 + x^j), then a(n) ~ r^c * (1+r) * exp(sqrt((2*log(d)^2 + 8*b*log(d)*log(r) + 4*b*(2*b+1)*log(r)^2 + 4*polylog(2, 1/(1+r)) - Pi^2/3)*n)) / (2*sqrt((r + 2*b*(1+r))*n)), where r is the smallest positive real root of the equation d*r^(2*b)*(1+r) = 1.

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[2^k * x^(k*(k+1)) * Product[1+x^j, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 80; p = 1; s = 1; Do[p = Normal[Series[2*p*(1 + x^k) * x^(2*k), {x, 0, nmax}]]; s += p; , {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ r * (1+r) * exp(sqrt((2*log(2)^2 + 8*log(2)*log(r) + 12*log(r)^2 + 4*polylog(2, 1/(1+r)) - Pi^2/3)*n)) / (2*sqrt((3*r + 2)*n)), where r = ((46 - 6*sqrt(57))^(1/3) + (46 + 6*sqrt(57))^(1/3) - 2)/6 is the real root of the equation 2*r^2*(1+r) = 1 (A273065).

A376944 G.f.: Sum_{k>=0} 2^k * x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^j).

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 12, 8, 8, 16, 24, 24, 24, 32, 32, 64, 64, 64, 80, 80, 112, 160, 160, 160, 224, 224, 256, 320, 416, 416, 480, 576, 576, 704, 768, 896, 1152, 1216, 1280, 1536, 1600, 1856, 2112, 2304, 2560, 3200, 3456, 3584, 4224, 4480, 5120, 5760, 6144, 6656, 7808, 9088
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[2^k * x^(k*(k+1)/2) * Product[1+x^j, {j, 1, k}], {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
    nmax = 60; p = 1; s = 1; Do[p = Normal[Series[2*p*(1 + x^k) * x^k, {x, 0, nmax}]]; s += p; , {k, 1, Sqrt[2*nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ sqrt(1 + sqrt(3)) * exp(sqrt((2*log(2)^2 + 2*log(1 - sqrt(3)/2) * log(sqrt(3) - 1) + 4*polylog(2, sqrt(3) - 1) - Pi^2/3)*n)) / (4*3^(1/4)*sqrt(n)).

A376948 G.f.: Sum_{k>=0} 2^k * x^(k^2) / Product_{j=1..k} (1 - x^j).

Original entry on oeis.org

1, 2, 2, 2, 6, 6, 10, 10, 14, 22, 26, 34, 46, 54, 66, 82, 110, 126, 162, 194, 246, 286, 354, 410, 502, 606, 714, 842, 1014, 1190, 1418, 1658, 1950, 2278, 2666, 3090, 3646, 4198, 4882, 5634, 6558, 7534, 8754, 10002, 11558, 13230, 15218, 17322, 19910, 22702, 25914, 29466, 33606
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[2^k*x^(k^2) / Product[1-x^j, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ (Pi^2/6 + log(2)^2)^(1/4) * exp(sqrt((Pi^2/3 + 2*log(2)^2)*n)) / (2^(3/4) * sqrt(3*Pi) * n^(3/4)).
Showing 1-3 of 3 results.