A377001 Integers k equal to the sum over A000203(t) mod t, for some steps, starting with t = k and then using the result to feed the next calculation.
4, 8, 32, 72, 94, 118, 128, 144, 147, 204, 284, 1017, 1102, 1210, 1462, 1968, 2294, 2342, 2457, 2486, 2670, 2924, 5564, 6128, 6368, 7008, 8192, 10856, 12216, 12914, 14066, 14595, 16694, 18416, 18825, 19668, 21870, 22401, 22713, 23388, 26234, 26966, 29038, 31806
Offset: 1
Examples
k = 72 (2 steps): sigma(72) mod 72 = 51; sigma(51) mod 51 = 21 and 51 + 21 = 72. k = 147 (6 steps): sigma(147) mod 147 = 81; sigma(81) mod 81 = 40; sigma(40) mod 40 = 10; sigma(10) mod 10 = 8; sigma(8) mod 8 = 7; sigma(7) mod 7 = 1 and 81 + 40 + 10 + 8 + 7 + 1 = 147.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,n,v; v:=[]; for n from 1 to q do a:=0; b:=n; while a
Comments