A377002 Integers k equal to the sum over A024816(t) mod t, for some steps, starting with t = k and then using the result to feed the next calculation.
9, 20, 60, 78, 81, 117, 120, 136, 244, 261, 385, 532, 608, 1568, 2247, 2704, 2949, 4352, 5952, 6084, 6564, 10972, 15688, 17524, 20356, 21066, 21868, 42771, 58045, 92034, 103660, 108333, 145203, 196869, 201963, 225021, 226626, 232300, 263133, 309603, 431640, 497380
Offset: 1
Examples
k = 78 (7 steps): (78*79/2-sigma(78)) mod 78 = 27; (27*28/2-sigma(27)) mod 27 = 14; (14*15/2-sigma(14)) mod 14 = 11; (11*12/2-sigma(11)) mod 11 = 10; (10*11/2-sigma(10)) mod 10 = 7; (7*8/2-sigma(7)) mod 7 = 6; (6*7/2-sigma(6)) mod 6 = 3 and 27 + 14 + 11 + 10 + 7 + 6 + 3 = 78.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,n,v; v:=[]; for n from 1 to q do a:=0; b:=n; while a
Comments