cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A376935 Array read by antidiagonals: T(n,k) is the number of 2*n X 2*k binary matrices with all row sums k and column sums n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 20, 90, 20, 1, 1, 70, 1860, 1860, 70, 1, 1, 252, 44730, 297200, 44730, 252, 1, 1, 924, 1172556, 60871300, 60871300, 1172556, 924, 1, 1, 3432, 32496156, 14367744720, 116963796250, 14367744720, 32496156, 3432, 1, 1, 12870, 936369720, 3718394156400, 273957842462220, 273957842462220, 3718394156400, 936369720, 12870, 1
Offset: 0

Views

Author

Andrew Howroyd, Oct 11 2024

Keywords

Comments

T(n,k) is the number of 2*n X 2*k {-1,1} matrices with all rows and columns summing to zero.

Examples

			Array begins:
========================================================================
n\k | 0   1       2           3               4                   5 ...
----+------------------------------------------------------------------
  0 | 1   1       1           1               1                   1 ...
  1 | 1   2       6          20              70                 252 ...
  2 | 1   6      90        1860           44730             1172556 ...
  3 | 1  20    1860      297200        60871300         14367744720 ...
  4 | 1  70   44730    60871300    116963796250     273957842462220 ...
  5 | 1 252 1172556 14367744720 273957842462220 6736218287430460752 ...
  ...
		

Crossrefs

Main diagonal is A058527.
Cf. A008300, A195644, A333901, A334549, A377007 (up to permutations of rows and columns).

Programs

  • PARI
    T(n, k)={
      local(M=Map(Mat([2*k, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(i, p, v, e) = if(i<0, if(!e, acc(p, v)), my(t=polcoef(p,i)); for(j=0, min(t, e), self()(i-1, p+j*(x-1)*x^i, binomial(t, j)*v, e-j))));
      for(r=1, 2*n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-1, src[i, 1], src[i, 2], k))); vecsum(Mat(M)[,2]);
    }

Formula

T(n,k) = T(k,n).

A377060 Array read by antidiagonals: T(n,k) is the number of inequivalent n X k nonnegative integer matrices with all column sums n and row sums k up to permutation of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 5, 3, 1, 1, 1, 1, 3, 9, 9, 3, 1, 1, 1, 1, 4, 14, 43, 14, 4, 1, 1, 1, 1, 4, 28, 147, 147, 28, 4, 1, 1, 1, 1, 5, 44, 661, 1856, 661, 44, 5, 1, 1, 1, 1, 5, 73, 2649, 25888, 25888, 2649, 73, 5, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Oct 14 2024

Keywords

Comments

Terms may be computed without generating each matrix by enumerating the number of matrices by column sum sequence using dynamic programming. A PARI program showing this technique for the labeled case is given in A333901. Burnside's lemma can be used to extend this method to the unlabeled case. This seems to require looping over partitions for both rows and columns.

Examples

			Array begins:
==================================================
n\k | 0 1 2  3    4      5        6          7 ...
----+---------------------------------------------
  0 | 1 1 1  1    1      1        1          1 ...
  1 | 1 1 1  1    1      1        1          1 ...
  2 | 1 1 2  2    3      3        4          4 ...
  3 | 1 1 2  5    9     14       28         44 ...
  4 | 1 1 3  9   43    147      661       2649 ...
  5 | 1 1 3 14  147   1856    25888     346691 ...
  6 | 1 1 4 28  661  25888  1217727   55138002 ...
  7 | 1 1 4 44 2649 346691 55138002 8597641912 ...
  ...
		

Crossrefs

Main diagonal is A333734.
Columns k=0..4 are A000012, A000012, A008619, A377061, A377062.

Formula

T(n,k) = T(k,n).

A377003 Number of inequivalent 2*n X 6 binary arrays with row sums 3 and column sums n up to row and column permutations.

Original entry on oeis.org

1, 1, 3, 7, 19, 46, 132, 345, 951, 2457, 6198, 14816, 34126, 75057, 159176, 325021, 642473, 1230711, 2292826, 4160165, 7370620, 12768904, 21671722, 36080204, 59009291, 94910598, 150300578, 234560237, 361082376, 548722631, 823817750
Offset: 0

Views

Author

Andrew Howroyd, Oct 12 2024

Keywords

Examples

			The a(2) = 3 inequivalent matrices are:
  [ 1 1 1 0 0 0 ]    [ 1 1 1 0 0 0 ]    [ 1 1 1 0 0 0 ]
  [ 1 1 1 0 0 0 ]    [ 1 1 0 1 0 0 ]    [ 1 0 0 1 1 0 ]
  [ 0 0 0 1 1 1 ]    [ 0 0 1 0 1 1 ]    [ 0 1 0 1 0 1 ]
  [ 0 0 0 1 1 1 ]    [ 0 0 0 1 1 1 ]    [ 0 0 1 0 1 1 ]
		

Crossrefs

Column k=3 of A377007.
Cf. A172556.

A377004 Number of inequivalent 2*n X 8 binary arrays with row sums 4 and column sums n up to row and column permutations.

Original entry on oeis.org

1, 1, 4, 19, 194, 3144, 65548, 1272696, 21855504, 328629713, 4362818853, 51658865022, 551021529952, 5342121192394, 47446872310092, 388746259849648, 2956322263908194, 20980847841062062, 139630332607991630, 875184633222730558, 5186438905325403553
Offset: 0

Views

Author

Andrew Howroyd, Oct 12 2024

Keywords

Examples

			The a(2) = 4 inequivalent matrices are:
  [1 1 1 1 0 0 0 0]  [1 1 1 1 0 0 0 0 ]  [1 1 1 1 0 0 0 0]  [1 1 1 1 0 0 0 0]
  [1 1 1 1 0 0 0 0]  [1 1 1 0 1 0 0 0 ]  [1 1 0 0 1 1 0 0]  [1 1 0 0 1 1 0 0]
  [0 0 0 0 1 1 1 1]  [0 0 0 1 0 1 1 1 ]  [0 0 1 1 0 0 1 1]  [0 0 1 0 1 0 1 1]
  [0 0 0 0 1 1 1 1]  [0 0 0 0 1 1 1 1 ]  [0 0 0 0 1 1 1 1]  [0 0 0 1 0 1 1 1]
		

Crossrefs

Column k=4 of A377007.

A377005 Number of inequivalent 2*n X 10 binary arrays with row sums 5 and column sums n up to row and column permutations.

Original entry on oeis.org

1, 1, 5, 46, 3144, 601055, 128665248, 24124134235, 3846063693791, 523474723784499, 61451727919769422, 6288576962481252097, 566522424663964802533, 45327061007633462729853, 3246317954956652960733055, 209590042445523033214523199, 12275325090242910474009076242
Offset: 0

Views

Author

Andrew Howroyd, Oct 12 2024

Keywords

Crossrefs

Column k=5 of A377007.
Cf. A172557.

A377006 Number of inequivalent 2*n X 12 binary arrays with row sums 6 and column sums n up to row and column permutations.

Original entry on oeis.org

1, 1, 7, 132, 65548, 128665248, 294494683312, 607662931576945, 1078571634893111039, 1641745848357513999450, 2157522985252158679423406, 2468770667797731319051018701, 2480199767193520485788791333065
Offset: 0

Views

Author

Andrew Howroyd, Oct 12 2024

Keywords

Crossrefs

Column k=6 of A377007.
Cf. A172558.
Showing 1-6 of 6 results.