A377008 Decimal expansion of Sum_{k>=1} (zeta(2*k)/k)*(2/3)^(2*k).
8, 8, 3, 1, 0, 5, 8, 1, 3, 9, 6, 7, 1, 2, 6, 2, 5, 5, 8, 8, 5, 0, 2, 3, 7, 3, 8, 8, 8, 5, 6, 2, 3, 2, 9, 0, 8, 2, 7, 0, 5, 9, 2, 4, 4, 9, 0, 1, 6, 9, 7, 9, 0, 2, 1, 5, 2, 9, 4, 1, 5, 9, 0, 0, 0, 2, 6, 8, 3, 5, 7, 3, 9, 9, 6, 3, 0, 2, 0, 6, 0, 6, 8, 4, 9, 2, 6, 2, 9, 2, 0, 4, 7, 7, 2, 8, 9, 4, 9, 6, 0, 4, 0, 5, 7
Offset: 0
Examples
0.88310581396712625588502373888562329082705924490169...
References
- H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights, 2011, p. 272, eq. (29).
Links
- Eric Weisstein's MathWorld, Riemann Zeta Function.
- Wikipedia, Riemann zeta function.
Programs
-
Mathematica
RealDigits[Log[4*Pi/(3*Sqrt[3])], 10, 120][[1]] (* or *) RealDigits[Log[Gamma[1/3]*Gamma[5/3]], 10, 120][[1]]
-
PARI
log(4*Pi/(3*sqrt(3)))
-
PARI
log(gamma(1/3)*gamma(5/3))
Formula
Equals log(4*Pi/(3*sqrt(3))) = log(A275486).
Equals log(Gamma(1/3)*Gamma(5/3)).