A377038 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the squarefree numbers.
1, 2, 1, 3, 1, 0, 5, 2, 1, 1, 6, 1, -1, -2, -3, 7, 1, 0, 1, 3, 6, 10, 3, 2, 2, 1, -2, -8, 11, 1, -2, -4, -6, -7, -5, 3, 13, 2, 1, 3, 7, 13, 20, 25, 22, 14, 1, -1, -2, -5, -12, -25, -45, -70, -92, 15, 1, 0, 1, 3, 8, 20, 45, 90, 160, 252, 17, 2, 1, 1, 0, -3, -11, -31, -76, -166, -326, -578
Offset: 0
Examples
Array form: n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9: ---------------------------------------------------------- k=0: 1 2 3 5 6 7 10 11 13 k=1: 1 1 2 1 1 3 1 2 1 k=2: 0 1 -1 0 2 -2 1 -1 0 k=3: 1 -2 1 2 -4 3 -2 1 1 k=4: -3 3 1 -6 7 -5 3 0 -2 k=5: 6 -2 -7 13 -12 8 -3 -2 3 k=6: -8 -5 20 -25 20 -11 1 5 -5 k=7: 3 25 -45 45 -31 12 4 -10 10 k=8: 22 -70 90 -76 43 -8 -14 20 -19 k=9: -92 160 -166 119 -51 -6 34 -39 28 Triangle form: 1 2 1 3 1 0 5 2 1 1 6 1 -1 -2 -3 7 1 0 1 3 6 10 3 2 2 1 -2 -8 11 1 -2 -4 -6 -7 -5 3 13 2 1 3 7 13 20 25 22 14 1 -1 -2 -5 -12 -25 -45 -70 -92 15 1 0 1 3 8 20 45 90 160 252
Crossrefs
Programs
-
Mathematica
nn=9; t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}] Table[t[[j,i-j+1]],{i,nn},{j,i}]
Formula
A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A005117(i+k).
Comments