A377051 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the powers of primes.
1, 2, 1, 3, 1, 0, 4, 1, 0, 0, 5, 1, 0, 0, 0, 7, 2, 1, 1, 1, 1, 8, 1, -1, -2, -3, -4, -5, 9, 1, 0, 1, 3, 6, 10, 15, 11, 2, 1, 1, 0, -3, -9, -19, -34, 13, 2, 0, -1, -2, -2, 1, 10, 29, 63, 16, 3, 1, 1, 2, 4, 6, 5, -5, -34, -97, 17, 1, -2, -3, -4, -6, -10, -16, -21, -16, 18, 115
Offset: 0
Examples
Array form: n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9: ---------------------------------------------------------- k=0: 1 2 3 4 5 7 8 9 11 k=1: 1 1 1 1 2 1 1 2 2 k=2: 0 0 0 1 -1 0 1 0 1 k=3: 0 0 1 -2 1 1 -1 1 -3 k=4: 0 1 -3 3 0 -2 2 -4 6 k=5: 1 -4 6 -3 -2 4 -6 10 -8 k=6: -5 10 -9 1 6 -10 16 -18 5 k=7: 15 -19 10 5 -16 26 -34 23 9 k=8: -34 29 -5 -21 42 -60 57 -14 -42 k=9: 63 -34 -16 63 -102 117 -71 -28 104 Triangle form: 1 2 1 3 1 0 4 1 0 0 5 1 0 0 0 7 2 1 1 1 1 8 1 -1 -2 -3 -4 -5 9 1 0 1 3 6 10 15 11 2 1 1 0 -3 -9 -19 -34 13 2 0 -1 -2 -2 1 10 29 63 16 3 1 1 2 4 6 5 -5 -34 -97
Programs
-
Mathematica
nn=12; t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,1,2*nn],k],nn],{k,0,nn}] Table[t[[j,i-j+1]],{i,nn},{j,i}]
Formula
A(i,j) = Sum_{k=0..j} (-1)^(j-k)*binomial(j,k)*A000961(i+k).
Comments