cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A377063 Array read by antidiagonals: T(n,k) is the number of {-1,0,1} n X k matrices with all rows and columns summing to zero up to permutations of rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 10, 6, 3, 1, 1, 1, 1, 26, 30, 12, 3, 1, 1, 1, 1, 71, 166, 117, 18, 4, 1, 1, 1, 1, 197, 981, 1421, 345, 30, 4, 1, 1, 1, 1, 554, 5937, 20326, 9691, 1042, 42, 5, 1, 1, 1, 1, 1570, 36646, 307063, 336596, 63076, 2746, 63, 5, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Oct 14 2024

Keywords

Comments

Columns are not permutable.
Equivalently, the number of n X k 0..2 arrays with row sums k and column sums n up to permutations of rows.

Examples

			Array begins:
===================================================
n\k | 0 1 2  3    4      5        6           7 ...
----+----------------------------------------------
  0 | 1 1 1  1    1      1        1           1 ...
  1 | 1 1 1  1    1      1        1           1 ...
  2 | 1 1 2  4   10     26       71         197 ...
  3 | 1 1 2  6   30    166      981        5937 ...
  4 | 1 1 3 12  117   1421    20326      307063 ...
  5 | 1 1 3 18  345   9691   336596    12650093 ...
  6 | 1 1 4 30 1042  63076  5328136   506525279 ...
  7 | 1 1 4 42 2746 369036 76292516 18490880339 ...
  ...
		

Crossrefs

Main diagonal is A377064.
Rows n=0..4 are A000012, A000012, A257520, A377065, A377066.
Columns k=0..4 are A000012, A000012, A008619, A377067, A377068.
Cf. A334549.

A377067 Number of n X 3 0..2 matrices with row sums 3 and column sums n up to permutations of rows.

Original entry on oeis.org

1, 1, 4, 6, 12, 18, 30, 42, 63, 85, 118, 154, 204, 258, 330, 408, 507, 615, 748, 892, 1066, 1254, 1476, 1716, 1995, 2295, 2640, 3010, 3430, 3880, 4386, 4926, 5529, 6171, 6882, 7638, 8470, 9352, 10318, 11340, 12453, 13629, 14904, 16248, 17700, 19228, 20872, 22600, 24453, 26397, 28476
Offset: 0

Views

Author

Andrew Howroyd, Oct 15 2024

Keywords

Comments

Also, the number of n X 3 {-1,0,1} matrices with all rows and columns summing to zero up to permutations of rows.

Examples

			The a(2) = 4 matrices are:
  [1 1 1]  [2 1 0]  [2 0 1]  [1 2 0]
  [1 1 1]  [0 1 2]  [0 2 0]  [1 0 2]
The a(3) = 6 matrices are:
  [1 1 1]  [2 1 0]  [2 0 1]  [1 2 0]  [2 1 0]  [2 0 1]
  [1 1 1]  [0 1 2]  [0 2 0]  [1 0 2]  [1 0 2]  [1 2 0]
  [1 1 1]  [1 1 1]  [1 1 1]  [1 1 1]  [0 2 1]  [0 1 2]
		

Crossrefs

Column k=3 of A377063.

Programs

  • PARI
    Vec((1 - x + x^2)/((1 - x)^5*(1 + x)^2*(1 + x + x^2)) + O(x^51))

Formula

G.f.: (2/(1 - x^3) - 1)/((1 - x)*(1 - x^2)^3).
G.f.: (1 - x + x^2)/((1 - x)^5*(1 + x)^2*(1 + x + x^2)).

A377066 Number of 4 X n 0..2 matrices with row sums n and column sums 4 up to permutations of rows.

Original entry on oeis.org

1, 1, 3, 12, 117, 1421, 20326, 307063, 4809897, 77098437, 1257981093, 20817768368, 348552520988, 5893520355308, 100492937876761, 1726068011602392, 29836176505279377, 518637160845827153, 9060385447950862705, 158987518980922356784, 2801031979220628009327
Offset: 0

Views

Author

Andrew Howroyd, Oct 15 2024

Keywords

Comments

Also, the number of 4 X n {-1,0,1} matrices with all rows and columns summing to zero up to permutations of rows.

Examples

			The a(2) = 3 matrices are:
   [1 1]   [2 0]   [2 0]
   [1 1]   [1 1]   [2 0]
   [1 1]   [1 1]   [0 2]
   [1 1]   [0 2]   [0 2]
		

Crossrefs

Row n=4 of A377063.
Showing 1-3 of 3 results.