A377067 Number of n X 3 0..2 matrices with row sums 3 and column sums n up to permutations of rows.
1, 1, 4, 6, 12, 18, 30, 42, 63, 85, 118, 154, 204, 258, 330, 408, 507, 615, 748, 892, 1066, 1254, 1476, 1716, 1995, 2295, 2640, 3010, 3430, 3880, 4386, 4926, 5529, 6171, 6882, 7638, 8470, 9352, 10318, 11340, 12453, 13629, 14904, 16248, 17700, 19228, 20872, 22600, 24453, 26397, 28476
Offset: 0
Examples
The a(2) = 4 matrices are: [1 1 1] [2 1 0] [2 0 1] [1 2 0] [1 1 1] [0 1 2] [0 2 0] [1 0 2] The a(3) = 6 matrices are: [1 1 1] [2 1 0] [2 0 1] [1 2 0] [2 1 0] [2 0 1] [1 1 1] [0 1 2] [0 2 0] [1 0 2] [1 0 2] [1 2 0] [1 1 1] [1 1 1] [1 1 1] [1 1 1] [0 2 1] [0 1 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-3,-1,1,3,-1,-2,1).
Programs
-
PARI
Vec((1 - x + x^2)/((1 - x)^5*(1 + x)^2*(1 + x + x^2)) + O(x^51))
Formula
G.f.: (2/(1 - x^3) - 1)/((1 - x)*(1 - x^2)^3).
G.f.: (1 - x + x^2)/((1 - x)^5*(1 + x)^2*(1 + x + x^2)).
Comments