cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A377105 E.g.f. A(x) satisfies [x^k] A(x)^(n*(n+1)/2+1) = 0 for k = n*(n-1)/2+2 through k = n*(n+1)/2+1 for n >= 1, with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, -1, 3, -15, 120, -1530, 27630, -609570, 15061950, -401747850, 11409145650, -343436893650, 10953453262050, -370722834699750, 13349217937623750, -512802860608788750, 21056741300679288750, -924609697617056519250, 43346843603808212081250, -2162059111418145178443750
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2024

Keywords

Comments

Compare to: [x^k] 1/C(-x)^(n*(n+1)/2+2) = 0 for k = n*(n-1)/2+2 through k = n*(n+1)/2+1 for n >= 1 when C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers (A000108).

Examples

			E.g.f.: A(x) = 1 + x - x^2/2! + 3*x^3/3! - 15*x^4/4! + 120*x^5/5! - 1530*x^6/6! + 27630*x^7/7! - 609570*x^8/8! + 15061950*x^9/9! - 401747850*x^10/10! + 11409145650*x^11/11! - 343436893650*x^12/12! + ...
RELATED TABLES.
The table of coefficients of x^k/k! in A(x)^n begins
 n\k 0   1   2    3     4      5      6      7
 1; [1,  1, -1,   3,  -15,   120, -1530, 27630, ...];
 2; [1,  2,  0,   0,    0,    30,  -990, 25650, ...];
 3; [1,  3,  3,  -3,    9,     0,  -900, 24300, ...];
 4; [1,  4,  8,   0,    0,    60, -1260, 23580, ...];
 5; [1,  5, 15,  15,  -15,   120, -1350, 18450, ...];
 6; [1,  6, 24,  48,    0,    90,  -810,  8910, ...];
 7; [1,  7, 35, 105,  105,     0,     0,     0, 11340, ...];
 8; [1,  8, 48, 192,  384,   120,   360, -3240, 45000, ...];
 9; [1,  9, 63, 315,  945,  1080,   270,  -810, 18630, ...];
10; [1, 10, 80, 480, 1920,  3990,  2250,  2250, -8550, ...];
11; [1, 11, 99, 693, 3465, 10560, 13860,  5940,     0, 0, 0, 0, -1336500, ...];
...
in which (at least) m contiguous zeros are found in row n = m*(m+1)/2+1 starting at k = m*(m-1)/2+2 through k = n for m >= 1.
Explicitly, zeros are found in the above table at (row,column) = (n,k) given by
[(2,2), (4,3), (4,4), (7,5), (7,6), (7,7), (11,8), (11,9), (11,10), (11,11), (16,12), (16,13), (16,14), (16,15), (16,16), ...]
and by definition this pattern of zeros continues indefinitely.
RELATED SERIES.
Let B(x) = A(x/B(x)) and A(x) = B(x*A(x)) then
B(x) = 1 + x + x^2/2! + 0*x^3/3! - 3*x^4/4! + 15*x^5/5! + 0*x^6/6! - 405*x^7/7! + 2070*x^8/8! + 1620*x^9/9! + 0*x^10/10! - 1935900*x^11/11! + 27592650*x^12/12! - 63022050*x^13/13! - 1958737950*x^14/14! + 0*x^15/15! + ... + A377106(n)*x^n/n! + ...
where [x^(n*(n+1)/2)] B(x) = 0 for n >= 2.
1/A(-x) = 1 + x + 3*x^2/2! + 15*x^3/3! + 105*x^4/4! + 960*x^5/5! + 11160*x^6/6! + 163080*x^7/7! + 2948580*x^8/8! + 64082340*x^9/9! + 1614532500*x^10/10! + 45628134300*x^11/11! + 1411847739000*x^12/12! + ...
		

Crossrefs

Cf. A377106.

Programs

  • PARI
    {b(m) = my(t = (sqrtint(8*m-8)+1)\2); t*(t+1)/2+1}
    {a(n) = my(V=[1, 1, 0], A); for(i=0, n, V = concat(V, 0); A = Ser(V); m = #V-2;
    V[#V-1] = -polcoef(A^b(m), m)/b(m) ); n!*polcoef(A, n)}
    for(n=1, 30, print1(a(n), ", "))
Showing 1-1 of 1 results.