A377118 a(n) = coefficient of 2^(1/3) in the expansion of (2^(1/3) + 2^(2/3))^n.
0, 1, 2, 6, 18, 48, 144, 396, 1152, 3240, 9288, 26352, 75168, 213840, 609120, 1734048, 4937760, 14059008, 40030848, 113980608, 324539136, 924068736, 2631118464, 7491647232, 21331123200, 60736594176, 172936622592, 492406304256, 1402039300608, 3992057561088
Offset: 0
Examples
((2^(1/3) + 2^(2/3)))^3 = 4 + 2*2^(1/3) + 2^(2/3), so a(3) = 2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,6,6).
Programs
-
Mathematica
(* Program 1 generates sequences A377117-A377119. *) tbl = Table[Expand[(2^(1/3) + 2^(2/3))^n], {n, 0, 30}]; u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &, Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]]; {s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]]; s2 (* Peter J. C. Moses, Oct 16 2024 *) (* Program 2 generates (a(n)) for n>=1. *) LinearRecurrence[{0,6,6}, {0,1,2}, 30]
Formula
a(n) = 6*a(n-2) + 6*a(n-3) for n>=1, with a(0)=0, a(1)=1, a(3)=2.
G.f.: x*(1 + 2*x)/(1 - 6*x^2 - 6*x^3).
Comments