A377121 Numbers whose totient is refactorable.
1, 2, 3, 4, 6, 13, 15, 16, 19, 20, 21, 24, 26, 27, 28, 30, 35, 36, 37, 38, 39, 41, 42, 45, 52, 54, 55, 56, 57, 61, 63, 70, 72, 73, 74, 75, 76, 77, 78, 82, 84, 87, 88, 89, 90, 91, 93, 95, 97, 99, 100, 108, 109, 110, 111, 114, 115, 116, 117, 119, 122, 123, 124, 126, 129, 132, 133, 135, 137, 146, 147, 148, 150, 152, 153
Offset: 1
Keywords
Examples
3, 4, and 6 are terms as their totients equal 2, which is the second refactorable number.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local p; p:= numtheory:-phi(n); p mod numtheory:-tau(p) = 0 end proc: select(filter, [$1..200]); # Robert Israel, Dec 12 2024
-
Mathematica
Select[Range[200], Mod[EulerPhi[#], DivisorSigma[0,EulerPhi[#]]]==0&]
-
PARI
for(n=1, 200, a=eulerphi(n); a%numdiv(a)==0&&print1(n", "))
-
Python
from sympy import divisor_sigma, totient for i in range(1, 200): if totient(i)%divisor_sigma(totient(i), 0)==0: print(i, end=", ")
Comments