A377125 Number of subsets of the first n perfect powers whose sum is a perfect power.
1, 2, 4, 5, 8, 10, 19, 28, 50, 77, 140, 232, 400, 682, 1234, 2153, 3714, 6825, 12125, 22308, 43065, 79407, 151201, 291945, 564267, 1088341, 2135410, 4119306, 7849329, 14826987, 27802222, 51646813, 95519435, 176054349, 327888258, 616082702, 1171710821, 2247355919
Offset: 1
Keywords
Examples
a(6) = 10 subsets: {1}, {4}, {8}, {9}, {16}, {25}, {1, 8}, {9, 16}, {1, 8, 16} and {8, 16, 25}.
Programs
-
Python
from itertools import count from sympy import perfect_power from functools import cache def cond(s): return bool(s == 1 or perfect_power(s)) @cache def u(n): if n == 1: return 1 return next(k for k in count(u(n-1)+1) if perfect_power(k)) @cache def b(n, s): assert type(s) == int, (n, s) if n == 0: return int(cond(s)) return b(n-1, s) + b(n-1, s+u(n)) a = lambda n: b(n, 0) print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Oct 18 2024
Extensions
a(23) and beyond from Michael S. Branicky, Oct 18 2024