A376923 T(n, k) = T(n - 1, k) + 2^(n - 1)*T(n - 2, k - 1), if k > 0 and T(n, 0) = 2^n.
1, 2, 0, 4, 2, 0, 8, 10, 0, 0, 16, 42, 16, 0, 0, 32, 170, 176, 0, 0, 0, 64, 682, 1520, 512, 0, 0, 0, 128, 2730, 12400, 11776, 0, 0, 0, 0, 256, 10922, 99696, 206336, 65536, 0, 0, 0, 0, 512, 43690, 798576, 3380736, 3080192, 0, 0, 0, 0, 0, 1024, 174762, 6390640, 54425088, 108724224, 33554432, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: n\k 0 | 1 | 2 | 3 | 4 | 5 [0] 1, [1] 2, 0 [2] 4, 2, 0 [3] 8, 10, 0, 0 [4] 16, 42, 16, 0, 0 [5] 32, 170, 176, 0, 0, 0
Programs
-
PARI
T(n, k) = if(n < 0, return(0), return(if(k == 0, return(2^n), T(n-1,k) + 2^(n-1)*T(n-2,k-1))))
Formula
Column k has o.g.f.: x^(2*k)*2^(k^2)/((1 - 2^(k+1)*x)*Product_{m=1..k}(1 - 2^(m-1)*x)).
Comments