cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377152 a(n) = Sum_{k=0..n} binomial(k+4,4) * binomial(k,n-k)^2.

Original entry on oeis.org

1, 5, 20, 95, 400, 1561, 5915, 21610, 76585, 265075, 898622, 2992235, 9810290, 31727815, 101379175, 320464280, 1003259080, 3113576320, 9586763720, 29305985800, 88997753446, 268642069750, 806394498200, 2408144329250, 7157177344225, 21177323087891
Offset: 0

Views

Author

Seiichi Manyama, Oct 18 2024

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(binomial(k+4,4)*binomial(k,n-k)^2,k=0..n) end proc:
    map(f, [$0..50]); # Robert Israel, Dec 05 2024
  • PARI
    a(n) = sum(k=0, n, binomial(k+4, 4)*binomial(k, n-k)^2);
    
  • PARI
    a089627(n, k) = n!/((n-2*k)!*k!^2);
    my(N=4, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))

Formula

G.f.: (Sum_{k=0..2} A089627(4,k) * (1-x-x^2)^(4-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^(9/2).