cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377166 Expansion of g.f. x*(21 + 123*x + 129*x^2 + 4*x^3 + 129*x^4 + 123*x^5 + 21*x^6)/((1 - x)^3*(1 + x + x^2 + x^3)^2).

Original entry on oeis.org

0, 21, 144, 273, 277, 448, 817, 1096, 1104, 1425, 2040, 2469, 2481, 2952, 3813, 4392, 4408, 5029, 6136, 6865, 6885, 7656, 9009, 9888, 9912, 10833, 12432, 13461, 13489, 14560, 16405, 17584, 17616, 18837, 20928, 22257, 22293, 23664, 26001, 27480, 27520, 29041, 31624, 33253, 33297, 34968
Offset: 0

Views

Author

Stefano Spezia, Oct 18 2024

Keywords

Comments

Numbers k such that 275*k + 1 is a square. The set of the integer square roots of 275*k + 1 is a superset of A377165.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*(21 + 123*x + 129*x^2 + 4*x^3 + 129*x^4 + 123*x^5 + 21*x^6)/((1 - x)^3*(1 + x + x^2 + x^3)^2),{x,0,45}],x]

Formula

a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n > 8.
a(n) = (245 + 550*n*(1 + n) - 25*(-1)^n*(1 + 2*n) - 44*(5 + 11*n)*A056594(n) - 44*(6 + 11*n)*A056594(n-1))/32.
E.g.f.: (5*(22 + 115*x + 55*x^2)*cosh(x) - 22*((5 + 11*x)*cos(x) + (6 - 11*x)*sin(x)) + 5*(27 + 105*x + 55*x^2)*sinh(x))/16.