A377187 Triangle read by rows: T(n,k) = numerator((n^2 + k)/(n^2 - k)).
3, 11, 2, 9, 19, 5, 27, 14, 29, 3, 19, 13, 5, 41, 7, 51, 26, 53, 27, 55, 4, 33, 67, 17, 69, 35, 71, 9, 83, 14, 85, 43, 29, 44, 89, 5, 51, 103, 13, 21, 53, 107, 27, 109, 11, 123, 62, 125, 63, 127, 64, 129, 65, 131, 6, 73, 49, 37, 149, 25, 151, 19, 17, 77, 155, 13
Offset: 2
Examples
The triangle begins as: 3; 11, 2; 9, 19, 5; 27, 14, 29, 3; 19, 13, 5, 41, 7; 51, 26, 53, 27, 55, 4; 33, 67, 17, 69, 35, 71, 9; 83, 14, 85, 43, 29, 44, 89, 5; 51, 103, 13, 21, 53, 107, 27, 109, 11; ...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.3, p. 14.
Programs
-
Mathematica
T[n_,k_]:=Numerator[(n^2+k)/(n^2-k)]; Table[T[n,k],{n,2,12},{k,2,n}]//Flatten
-
Python
from math import isqrt, comb, gcd def A377187(n): return (d:=(a:=(m:=isqrt(k:=n-1<<1))+(k>m*(m+1))+1)**2+(b:=n-comb(a-1,2)))//gcd(d,d-(b<<1)) # Chai Wah Wu, Nov 12 2024