A377210 Zeckendorf-Niven numbers (A328208) k such that m = k/z(k) and m/z(m) are also Zeckendorf-Niven numbers, where z(k) = A007895(k) is the number of terms in the Zeckendorf representation of k.
1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 16, 21, 24, 26, 30, 34, 42, 48, 55, 60, 68, 78, 89, 110, 120, 126, 144, 178, 180, 192, 204, 233, 243, 264, 270, 288, 300, 312, 324, 330, 360, 377, 466, 480, 534, 540, 576, 600, 610, 621, 672, 720, 754, 768, 864, 987, 1020, 1056
Offset: 1
Examples
24 is a term since 24/z(24) = 12, 12/z(12) = 4 and 4/z(4) = 2 are all integers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
zeck[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *) q[k_] := Module[{z = zeck[k], z2, m, n}, IntegerQ[m = k/z] && Divisible[m, z2 = zeck[m]] && Divisible[n = m/z2, zeck[n]]]; Select[Range[1000], q]
-
PARI
zeck(n) = if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s) \\ Charles R Greathouse IV at A007895 is(k) = {my(z = zeck(k), z2, m); if(k % z, return(0)); m = k/z; z2 = zeck(m); !(m % z2) && !((m/z2) % zeck(m/z2)); }