cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377210 Zeckendorf-Niven numbers (A328208) k such that m = k/z(k) and m/z(m) are also Zeckendorf-Niven numbers, where z(k) = A007895(k) is the number of terms in the Zeckendorf representation of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 16, 21, 24, 26, 30, 34, 42, 48, 55, 60, 68, 78, 89, 110, 120, 126, 144, 178, 180, 192, 204, 233, 243, 264, 270, 288, 300, 312, 324, 330, 360, 377, 466, 480, 534, 540, 576, 600, 610, 621, 672, 720, 754, 768, 864, 987, 1020, 1056
Offset: 1

Views

Author

Amiram Eldar, Oct 20 2024

Keywords

Examples

			24 is a term since 24/z(24) = 12, 12/z(12) = 4 and 4/z(4) = 2 are all integers.
		

Crossrefs

Cf. A000045 (a subsequence), A007895, A376617 (binary analog).
Subsequence of A328208 and A377209.

Programs

  • Mathematica
    zeck[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *)
    q[k_] := Module[{z = zeck[k], z2, m, n}, IntegerQ[m = k/z] && Divisible[m, z2 = zeck[m]] && Divisible[n = m/z2, zeck[n]]]; Select[Range[1000], q]
  • PARI
    zeck(n) = if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s) \\ Charles R Greathouse IV at A007895
    is(k) = {my(z = zeck(k), z2, m); if(k % z, return(0)); m = k/z; z2 = zeck(m); !(m % z2) && !((m/z2) % zeck(m/z2)); }