A377272 Numbers k such that k and k+1 are both terms in A377210.
1, 2, 3, 4, 5, 12, 47375, 2310399, 3525200, 6506367, 9388224, 17613504, 29373839, 41534800, 48191759, 48344120, 66927384, 68094999, 71982999, 92547279, 95497919, 110146959, 110395439, 126123920, 148865535, 152546030, 154451583, 171570069, 193628799, 232058519
Offset: 1
Examples
47375 is a term since both 47375 and 47376 are in A377210: 47375/A007895(47375) = 9475, 9475/A007895(9475) = 1895 and 1895/A007895(1895) = 379 are integers, and 47376/A007895(47376) = 15792, 15792/A007895(15792) = 3948 and 3948/A007895(3948) = 1316 are integers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..370
Crossrefs
Programs
-
Mathematica
zeck[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *) q[k_] := q[k] = Module[{z = zeck[k], z2, m, n}, IntegerQ[m = k/z] && Divisible[m, z2 = zeck[m]] && Divisible[n = m/z2, zeck[n]]]; Select[Range[50000], q[#] && q[#+1] &]
-
PARI
zeck(n) = if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s); \\ Charles R Greathouse IV at A007895 is1(k) = {my(z = zeck(k), z2, m); if(k % z, return(0)); m = k/z; z2 = zeck(m); !(m % z2) && !((m/z2) % zeck(m/z2)); } lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2); }
Comments