cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377212 a(n) is the least number k that is not a quadratic residue modulo prime(n) but is a quadratic residue modulo all previous primes.

Original entry on oeis.org

2, 3, 6, 21, 15, 91, 246, 429, 1005, 399, 3094, 3045, 21099, 41155, 43059, 404754, 214230, 569130, 182919, 2190279, 860574, 9361374, 8042479, 33440551, 36915670, 11993466, 287638530, 182528031, 697126530, 78278655, 3263415285, 6941299170, 25856763139, 32968406926, 13803374706
Offset: 2

Views

Author

Robert Israel, Oct 19 2024

Keywords

Comments

a(n) = A000037(j) for the least j such that A144294(j) = prime(n).
Such numbers k exist for all n >= 2: for example, if x is a quadratic nonresidue modulo prime(n), by the Chinese Remainder Theorem there exists k such that k == x (mod prime(n)) and k == 1 (mod prime(j)) for 1 <= j < n.

Examples

			a(4) = 6 because 6 is not a quadratic residue modulo 7, but is a quadratic residue modulo 2, 3, and 5, and no smaller number works.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k,p;
      if issqr(n) then return -1 fi;
      p:= 1;
      for k from 1 do
          p:= nextprime(p);
          if numtheory:-quadres(n,p) = -1 then return k fi
      od
    end proc:
    V:= Array(2..32): count:= 0:
    for k from 2 while count < 31 do
      v:= f(k);
    if v > 0 and v <= 32 and V[v] = 0 then
      V[v]:= k; count:= count+1
    fi
    od:
    convert(V,list);
  • Python
    from itertools import count
    from math import isqrt
    from sympy.ntheory import prime, nextprime, legendre_symbol
    def A377212(n):
        p = prime(n)
        for r in count(1):
            k, q = r+(m:=isqrt(r))+(r>=m*(m+1)+1), 2
            while (q:=nextprime(q)):
                if q>p or legendre_symbol(k,q)==-1:
                    break
            if p==q:
                return k # Chai Wah Wu, Oct 20 2024

Extensions

a(33)-a(36) from Chai Wah Wu, Oct 21 2024