A377212 a(n) is the least number k that is not a quadratic residue modulo prime(n) but is a quadratic residue modulo all previous primes.
2, 3, 6, 21, 15, 91, 246, 429, 1005, 399, 3094, 3045, 21099, 41155, 43059, 404754, 214230, 569130, 182919, 2190279, 860574, 9361374, 8042479, 33440551, 36915670, 11993466, 287638530, 182528031, 697126530, 78278655, 3263415285, 6941299170, 25856763139, 32968406926, 13803374706
Offset: 2
Keywords
Examples
a(4) = 6 because 6 is not a quadratic residue modulo 7, but is a quadratic residue modulo 2, 3, and 5, and no smaller number works.
Programs
-
Maple
f:= proc(n) local k,p; if issqr(n) then return -1 fi; p:= 1; for k from 1 do p:= nextprime(p); if numtheory:-quadres(n,p) = -1 then return k fi od end proc: V:= Array(2..32): count:= 0: for k from 2 while count < 31 do v:= f(k); if v > 0 and v <= 32 and V[v] = 0 then V[v]:= k; count:= count+1 fi od: convert(V,list);
-
Python
from itertools import count from math import isqrt from sympy.ntheory import prime, nextprime, legendre_symbol def A377212(n): p = prime(n) for r in count(1): k, q = r+(m:=isqrt(r))+(r>=m*(m+1)+1), 2 while (q:=nextprime(q)): if q>p or legendre_symbol(k,q)==-1: break if p==q: return k # Chai Wah Wu, Oct 20 2024
Extensions
a(33)-a(36) from Chai Wah Wu, Oct 21 2024
Comments