A377218 Expansion of the o.g.f. A(x) defined by [x^n] A(x)^(24*n) = (4*n)!/n!^4 for n >= 0.
1, 1, 29, 2246, 239500, 30318701, 4271201506, 647359627557, 103476937050223, 17223017775652625, 2959285397777331751, 521687007046376376544, 93932798602803741121051, 17215649571517858590782737, 3203146941738318544432065500, 603763082812549420389330837978, 115095760617137117019641563685386
Offset: 0
Links
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012), arXiv:1111.3057 [math.NT], (2011).
Programs
-
Maple
Order := 25: E(x) := exp(add((4*n)!/n!^4 * x^n/n, n = 1..25)): solve(series(x*E(x),x) = y, x): convert(%, polynom): g := taylor(y/%, y = 0, 25): seq(coeftayl(g^(1/24), y = 0, n), n = 0..20);
Formula
O.g.f.: A(x) = ( x/(x * series_reversion(E(x)))^(1/24), where E(x) = exp(Sum_{n >= 1} (4*n)!/n!^4 *x^n/n) is the o.g.f. of A333042.
Comments