A377219 Expansion of the o.g.f. A(x) defined by [x^n] A(x)^(120*n) = (5*n)!/n!^5 for n >= 0.
1, 1, 353, 318986, 408941594, 633438203535, 1105336091531052, 2093867978990821853, 4212168629863126220194, 8871676970891643267231886, 19375253437183554713216237582, 43574669954100844749472466829032, 100404408695672206422230611142618195, 236114213302057579962294974098604849352, 564982003808755415617353442524468859709030
Offset: 0
Links
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012), arXiv:1111.3057 [math.NT], (2011).
Programs
-
Maple
Order := 25: E(x) := exp(add((5*n)!/n!^5 * x^n/n, n = 1..25)): solve(series(x*E(x),x) = y, x): convert(%, polynom): g := taylor(y/%, y = 0, 25): seq(coeftayl(g^(1/120), y = 0, n), n = 0..20);
Formula
O.g.f.: A(x) = ( x/(x * series_reversion(E(x)))^(1/120), where E(x) = exp(Sum_{n >= 1} (5*n)!/n!^5 *x^n/n) is the o.g.f. of A333043.
Comments