A377220 Expansion of (1/x) * series_reversion(x*E_4(x)), where E_4(x) denotes the Eisenstein series of weight 4 (see A004009).
1, -240, 113040, -66534720, 43859560080, -30976854078240, 22919806575299520, -17536455012714130560, 13761543459443537811600, -11015192093055645841813680, 8958361831335008460574345440, -7381454927286057227098811282880, 6148958599311807793865548969813440, -5169975617288319668409172392988655520
Offset: 0
Examples
The 8th root of the g.f. A(x)^(1/8) = (1 - 240*x + 113040*x^2 - 66534720*x^3 + 43859560080*x^4 - 30976854078240*x^5 + 22919806575299520*x^6 +...)^(1/8) = 1 - 30*x + 10980*x^2 - 5822040*x^3 + 3623245710*x^4 - 2467207358280*x^5 + 1779938570782440*x^6 + .... lies in Z[[x]]. See A377221.
Programs
-
Maple
with(numtheory): Order := 30: E_4 := 1 + 240*add(sigma[3](n)*x^n, n = 1..30): solve(series(x*E_4, x) = y, x): seq(coeftayl(series((%/y), y), y = 0, n), n = 0..20);
Comments