A377230 Lexicographically earliest sequence of positive integers a(1), a(2), ... such that for any n >= 0, s(n) = Sum_{k=1..n} 1/(T(k)*a(k)) < 1, T = A000217.
2, 1, 2, 2, 3, 5, 23, 806, 519065, 220441054222, 222723684271305542570701, 41974171914555858099300698444579076459265512901, 1510140949639448391630842209382251970116940997822995817347241840058937174456186756365141648201
Offset: 1
Keywords
Examples
s(0), s(1), ... = 0, 1/2, 5/6, 11/12, 29/30, 89/90, 629/630, ... .
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..16
Programs
-
Maple
T:= n-> n*(n+1)/2: s:= proc(n) option remember; `if`(n=0, 0, s(n-1)+1/(T(n)*a(n))) end: a:= proc(n) option remember; 1+floor(1/((1-s(n-1))*T(n))) end: seq(a(n), n=1..13);