cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377237 Expansion of 1/sqrt(1 - 4*x/sqrt(1 - 4*x)).

Original entry on oeis.org

1, 2, 10, 56, 326, 1936, 11644, 70672, 431942, 2654816, 16392564, 101611536, 631938524, 3941350816, 24643020344, 154415141152, 969445760070, 6096812777664, 38401653547204, 242213348616592, 1529642560685684, 9671100898555168, 61208631472013256, 387759384222157152
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 4^n*sum(k=0, n, (-1)^k*binomial(-1/2, k)*binomial(n-k/2-1, n-k));

Formula

a(n) = 4^n * Sum_{k=0..n} (-1)^k * binomial(-1/2,k) * binomial(n-k/2-1,n-k).
a(n) ~ 2^(n+1) * (1 + sqrt(5))^(n - 1/2) / (5^(1/4) * sqrt(Pi*n)). - Vaclav Kotesovec, May 03 2025

A377262 Expansion of 1/(1 - 9*x/(1 - 9*x)^(2/3))^(2/3).

Original entry on oeis.org

1, 6, 81, 1170, 17280, 258228, 3888891, 58901256, 896105025, 13682343420, 209537016021, 3217031912808, 49497615312768, 762991150126320, 11780319846487905, 182142574910406972, 2819755778582302380, 43701602632437073050, 677982394543585361805, 10527648812452161725310
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2024

Keywords

Crossrefs

Cf. A377238.

Programs

  • PARI
    a(n) = 9^n*sum(k=0, n, (-1)^k*binomial(-2/3, k)*binomial(n-k/3-1, n-k));

Formula

a(n) = 9^n * Sum_{k=0..n} (-1)^k * binomial(-2/3,k) * binomial(n-k/3-1,n-k).
Showing 1-2 of 2 results.