cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377240 Expansion of (1 + 9*x/(1 - 9*x)^(1/3))^(1/3).

Original entry on oeis.org

1, 3, 0, 45, 108, 1782, 8424, 94527, 596322, 5765904, 41921874, 379715688, 2974945482, 26175549087, 213735748383, 1857916476288, 15539695570341, 134524740926700, 1141825482025200, 9881043227641251, 84668712937125633, 733670610133591773, 6327618171676167195
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2024

Keywords

Crossrefs

Cf. A377239.

Programs

  • PARI
    a(n) = 9^n*sum(k=0, n, binomial(1/3, k)*binomial(n-2*k/3-1, n-k));

Formula

a(n) = 9^n * Sum_{k=0..n} binomial(1/3,k) * binomial(n-2*k/3-1,n-k).
a(n) ~ 9^n / (Gamma(1/9) * n^(8/9)) * (1 - 2*Gamma(1/9)/(27*Gamma(7/9)*n^(1/3))). - Vaclav Kotesovec, May 03 2025

A377237 Expansion of 1/sqrt(1 - 4*x/sqrt(1 - 4*x)).

Original entry on oeis.org

1, 2, 10, 56, 326, 1936, 11644, 70672, 431942, 2654816, 16392564, 101611536, 631938524, 3941350816, 24643020344, 154415141152, 969445760070, 6096812777664, 38401653547204, 242213348616592, 1529642560685684, 9671100898555168, 61208631472013256, 387759384222157152
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 4^n*sum(k=0, n, (-1)^k*binomial(-1/2, k)*binomial(n-k/2-1, n-k));

Formula

a(n) = 4^n * Sum_{k=0..n} (-1)^k * binomial(-1/2,k) * binomial(n-k/2-1,n-k).
a(n) ~ 2^(n+1) * (1 + sqrt(5))^(n - 1/2) / (5^(1/4) * sqrt(Pi*n)). - Vaclav Kotesovec, May 03 2025
Showing 1-2 of 2 results.