cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A376568 Expansion of 1/(1 - 9*x*(1 + x))^(2/3).

Original entry on oeis.org

1, 6, 51, 450, 4095, 37908, 354978, 3351348, 31833945, 303822090, 2910657321, 27970777926, 269484894081, 2602002636540, 25170322256010, 243876058527132, 2366251795228437, 22987502934573762, 223563791480714685, 2176402892261301990, 21206170582394740371
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-9)^k*binomial(-2/3, k)*binomial(k, n-k));

Formula

a(n) = 3*((3*n-1)*a(n-1) + (3*n-2)*a(n-2))/n for n > 1.
a(n) = Sum_{k=0..n} (-9)^k * binomial(-2/3,k) * binomial(k,n-k).
a(n) ~ (3 + sqrt(13))^(n + 2/3) * 3^n / (Gamma(2/3) * 13^(1/3) * n^(1/3) * 2^(n + 2/3)). - Vaclav Kotesovec, Oct 26 2024

A377260 Expansion of 1/(1 - 9*x*(1 + x))^(4/3).

Original entry on oeis.org

1, 12, 138, 1512, 16191, 170856, 1785042, 18514548, 190978047, 1961435736, 20074741596, 204870399552, 2085761241018, 21191569851312, 214930928188116, 2176565295933000, 22012171108148025, 222351327936731700, 2243667436429422150, 22618648367553735000, 227826739721910301245
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-9)^k*binomial(-4/3, k)*binomial(k, n-k));

Formula

a(n) = 3*((3*n+1)*a(n-1) + (3*n+2)*a(n-2))/n for n > 1.
a(n) = Sum_{k=0..n} (-9)^k * binomial(-4/3,k) * binomial(k,n-k).
a(n) ~ n^(1/3) * 3^(n+1) * (3 + sqrt(13))^(n + 4/3) / (13^(2/3) * Gamma(1/3) * 2^(n + 4/3)). - Vaclav Kotesovec, May 03 2025
Showing 1-2 of 2 results.