cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377275 Decimal expansion of the volume of a truncated tetrahedron with unit edge length.

Original entry on oeis.org

2, 7, 1, 0, 5, 7, 5, 9, 9, 4, 5, 4, 8, 4, 3, 2, 1, 7, 6, 8, 6, 9, 9, 0, 3, 3, 8, 8, 0, 6, 8, 5, 8, 7, 9, 8, 3, 9, 2, 5, 2, 0, 4, 4, 2, 7, 8, 0, 5, 8, 1, 7, 1, 4, 0, 2, 5, 5, 3, 0, 2, 8, 3, 1, 1, 4, 8, 9, 0, 3, 9, 1, 7, 0, 5, 2, 3, 7, 1, 8, 2, 4, 4, 6, 3, 2, 4, 2, 7, 7
Offset: 1

Views

Author

Paolo Xausa, Oct 23 2024

Keywords

Examples

			2.7105759945484321768699033880685879839252044278...
		

Crossrefs

Cf. A377274 (surface area), A377276 (circumradius), A093577 (midradius), A377277 (Dehn invariant).
Cf. A020829 (analogous for a regular tetrahedron).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[23/12*Sqrt[2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedTetrahedron", "Volume"], 10, 100]]

Formula

Equals (23/12)*sqrt(2) = (23/12)*A002193.

A377274 Decimal expansion of the surface area of a truncated tetrahedron with unit edge length.

Original entry on oeis.org

1, 2, 1, 2, 4, 3, 5, 5, 6, 5, 2, 9, 8, 2, 1, 4, 1, 0, 5, 4, 6, 9, 2, 1, 2, 4, 3, 9, 0, 5, 4, 1, 1, 0, 6, 5, 6, 8, 5, 9, 9, 6, 3, 6, 7, 7, 6, 6, 7, 2, 6, 6, 4, 3, 9, 6, 3, 9, 0, 6, 4, 8, 8, 5, 6, 1, 6, 3, 5, 3, 1, 1, 1, 8, 3, 6, 1, 6, 0, 0, 2, 5, 9, 5, 6, 8, 0, 2, 3, 3
Offset: 2

Views

Author

Paolo Xausa, Oct 23 2024

Keywords

Examples

			12.12435565298214105469212439054110656859963677667...
		

Crossrefs

Cf. A377275 (volume), A377276 (circumradius), A093577 (midradius), A377277 (Dehn invariant).
Cf. A002194 (analogous for a regular tetrahedron).

Programs

  • Mathematica
    First[RealDigits[7*Sqrt[3], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedTetrahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 7*sqrt(3) = 7*A002194.
Showing 1-2 of 2 results.